Call us on:+86-760-22382116

Lifetime And Failure


Solid-state devices such as LEDs are subject to very limited wear and tear if operated at low currents and at low temperatures. Typical lifetimes quoted are 25,000 to 100,000 hours, but heat and current settings can extend or shorten this time significantly.[68]

The most common symptom of LED (and diode laser) failure is the gradual lowering of light output and loss of efficiency. Sudden failures, although rare, can also occur. Early red LEDs were notable for their short service life. With the development of high-power LEDs, the devices are subjected to higher junction temperatures and higher current densities than traditional devices. This causes stress on the material and may cause early light-output degradation. To quantitatively classify useful lifetime in a standardized manner it has been suggested to use L70 or L50, which are the runtimes (typically given in thousands of hours) at which a given LED reaches 70% and 50% of initial light output, respectively.[69]

Whereas in most previous sources of light (incandescent lamps, discharge lamps, and those that burn combustible fuel, e.g. candles and oil lamps) the light results from heat, LEDs only operate if they are kept cool enough. The manufacturer commonly specifies a maximum junction temperature of 125 or 150 °C, and lower temperatures are advisable in the interests of long life. At these temperatures, relatively little heat is lost by radiation, which means that the light beam generated by an LED is cool.

The waste heat in a high-power LED (which as of 2015 can be less than half the power that it consumes) is conveyed by conduction through the substrate and package of the LED to a heat sink, which gives up the heat to the ambient air by convection. Careful thermal design is, therefore, essential, taking into account the thermal resistances of the LED’s package, the heat sink and the interface between the two. Medium-power LEDs are often designed to be soldered directly to a printed circuit board that contains a thermally conductive metal layer. High-power LEDs are packaged in large-area ceramic packages designed to be attached to a metal heat sink, the interface being a material with high thermal conductivity (thermal greasephase-change materialthermally conductive pad or thermal adhesive).

If an LED-based lamp is installed in an unventilated luminaire, or a luminaire is located in an environment that does not have free air circulation, the LED is likely to overheat, resulting in reduced life or early catastrophic failure. Thermal design is often based on an ambient temperature of 25 °C (77 °F). LEDs used in outdoor applications, such as traffic signals or in-pavement signal lights, and in climates where the temperature within the light fixture gets very high, could experience reduced output or even failure.[70]

Since LED efficacy is higher at low temperatures, LED technology is well suited for supermarket freezer lighting.[71][72][73] Because LEDs produce less waste heat than incandescent lamps, their use in freezers can save on refrigeration costs as well. However, they may be more susceptible to frost and snow buildup than incandescent lamps,[70] so some LED lighting systems have been designed with an added heating circuit. Additionally, research has developed heat sink technologies that will transfer heat produced within the junction to appropriate areas of the light fixture.[74]

Your comments are always our motivation!
Home | About us | Products | News | Product knowledge | Contact us | Project Case | Exhibition | Mobile | XML
Copyright © Zhongshan Epistar Electronic Lighting Co.,Ltd